Abstract

Cation Exchange Capacity (CEC) is an important characteristic of soil in view point of nutrient and water holding capacity and contamination management. Measurement of CEC is difficult and time-consuming. Therefore, CEC estimation through other easily-measurable properties is desirable. The purpose of this research was to investigate CEC estimating using easily accessible parameters with Artificial Neural Network. In this study, the easily accessible parameters were sand, silt and clay contents, bulk density, particle density, organic matter (%OM), calcium carbonate equivalent (%CCE), pH, geometric mean diameter (dg) and geometric standard deviation of particle size (σg) in 69 points from a 1×2 km sampling grid. The results showed that Artificial Neural Network is a precise method to predict CEC that it can predict 82% of CEC variation. The most important influential factor on CEC was soil texture. The sensitivity analysis of the model developed by using of Artificial Neural Network represented that clay%, silt%, sand%, geometric mean diameter and geometric standard deviation of particle size, OM% and total porosity were the most sensitive parameters, respectively. The model with clay%, silt%, sand%, geometric mean diameter and geometric standard deviation of particle size as inputs data was selected as the base model to predict CEC at studied area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call