Abstract

Abstract This paper develops an investment algorithm based on Markowitz’s Portfolio Selection Theory, using historical stock return data, and empirically evaluates the performance of the proposed algorithm in the U.S. and the Hong Kong stock markets. The proposed investment algorithm is empirically tested with the 30 constituents of Dow Jones Industrial Average in the U.S. stock market, and the 30 constituents of Hang Seng Index in the Hong Kong stock market. During the 6-year investment period, starting on the first trading day of 2006 and ending on the last trading day of 2011, growth rates of 12.63% and 23.25% were observed for Dow Jones Industrial Average and Hang Seng Index, respectively, while the proposed investment algorithm ac hieved substantially higher cumulative returns of 35.7% in the U.S. stock market, and 150.62% in the Hong Kong stock market. When compared in terms of Sharpe ratio, Dow Jones Industrial Average and Hang Seng Index achieved 0.075 and 0.155 each, while the proposed investment algorithm showed superior performance, achieving 0.363 and 1.074 in the U.S. and Hong Kong stock markets, respectively. Further, performance in the U.S. stock market is shown to be less sensitive to an investor’s risk prefer-ence, while aggressive performance goals are shown to achieve relatively higher performance in the Hong Kong stock market. In conclusion, this paper empirically demonstrates that an investment based on a mathematical model using objective historical stock return data for constructing optimal portfolios achieves outstanding performance, in terms of both cumulative returns and Sharpe ratios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.