Abstract

In this paper, the inverse Cauchy problem for the heat equation is posed and solved. In this problem, the initial temperature is unknown, and instead of it, the temperature at a specific time is given, t = T > 0. They are characterized by the fact that arbitrarily small changes in the source data can lead to large changes in the solution. It is well known that this problem is an ill-posed problem. In order to solve the direct problem, the method of separation of variables is used. We noticed that the method of separating variables is not applicable to solving the inverse Cauchy problem since it leads to large errors, as well as to divergent rows. V.K. Ivanov noted that if the inverse problem is solved by the method of separation of variables, the resulting series is replaced with a partial sum of a series, where the number of terms depends on δ, N = N(δ). The Picard’s method uses the regularizing family of {R N }, operators mapping the L 2 [0, 1] space into itself. The results of computational experiments are presented and the effectiveness of this method is estimated.

Highlights

  • Постановка прямой задачи Коши для уравнения теплопроводностиПрямая задача состоит в теплопроводности, проходящей через бар с определенным граничным условием и начальным температурным условием.

  • 0, , удовлетворяющую уравнению (1) на ∈ 0, 1 и ∈ 0, , а также начальному условию (2) и граничным условиям (3)

  • Постановка обратной задачи Коши для уравнения теплопроводностиВ (1–3) можно рассмотреть обратную задачу Коши для уравнения теплопроводности, т.е. известно распределение температуры в момент времени.

Read more

Summary

Постановка прямой задачи Коши для уравнения теплопроводности

Прямая задача состоит в теплопроводности, проходящей через бар с определенным граничным условием и начальным температурным условием. 0, , удовлетворяющую уравнению (1) на ∈ 0, 1 и ∈ 0, , а также начальному условию (2) и граничным условиям (3)

Постановка обратной задачи Коши для уравнения теплопроводности
Решение обратной задачи Коши методом Пикара
Численный пример

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.