Abstract

반응 및 비반응 유동장에서 단일와동의 전개 및 와(渦) 구조 검토를 위해 2 차원 직접 수치모사를 수행하였다. 수치기법으로는 낮은 마하수 근사법이 적용된 예측-교정자법이 적용되었으며, 연소모텔로는 2단계 총괄 반응식이 사용되었다. 반응 및 비반응 유동장에서 단일와동의 거동 비교를 통해, 와동의 전개특성 및 구조는 화학반응으로부터 생성된 열 뿐만 아니라 부력에 의해 생성된 외부 와동에 크게 영향을 받음을 확인하였다. 또한 반응장의 경우에 부피 팽창항, Baroclinic torque항 및 부력항에 의해 와동의 구조가 크게 변화될 수 있음을 알았다. A two-dimensional direct numerical simulation was performed to investigate the evolution and vortical structure of a single vortex in reacting and non-reacting jet flow fields. A predictor-corrector-type numerical scheme with a low Mach number approximation was used, and a two-step global reaction mechanism was adopted as the combustion model. Through the comparisons of single vortex behaviors in reacting and non-reacting jet flow fields, it was found that the evolution characteristics and vortical structure of the single vortex were significantly influenced by a outer vortex that was generated from the buoyance effect as well as the chemical heat release. Furthermore, it was also identified that the differences of the vortical structure in reacting and non-reacting jet flow fields were mainly attributed to the thermal expansion, Baroclinic torque and buoyance effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call