Abstract

The water wave interactions on any three-dimensional structure of arbitrary geometry can be calculated numerically through the use of source distribution or Green's function techniques. However, such a method can be computationally expensive. In the present study, the water wave interactions in floating circular cylinder arrays were investigated numerically using the eigenfunction expansion method with the three- dimensional potential theory to reduce the computational expense. The wave excitation force, added mass coefficient, radiation damping coefficient, and wave run-up are presented with the water wave interactions in an array of 5 or 9 cylinders. The effects of the number of cylinders and the spacing between them are examined because the water wave interactions in floating circular cylinder arrays are significantly dependent upon these.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.