Abstract

Hydrogen is the lighter and more abundant element in nature. It is everywhere in earth, water, fossil fuels and in all the living creatures. If H2 can be properly extracted and utilized as a fuel in fuel cells, the dependence of the global economy on fossil fuels will be minimized, resulting in significant attenuation of the greenhouse gases emissions in the atmosphere. The low operation temperature of the polymer electrolyte membrane fuel cells (PEMFCs) offers a lot of advantages. In combination with the high power density yielded by the PEMFCs renders them as the main candidates for application in automotive industry. However, the low temperature raises significant problems, such as the use of noble metals for the acceleration of the basic reactions and the susceptibility in poisoning phenomena. The basic poison is carbon monoxide (CO), one of the main side-products of H2 production from fossil fuels, which for the moment is the main source of H2. In this thesis, the poisoning phenomena of the PEMFCs anode electrocatalysts from CO were investigated. Since CO is bounded on the surface of Pt stronger than the H2 fuel, its presence in the fuel feed in ppm levels deactivates the anode electrocatalyst. In order to eliminate this problem, bimetallic and ternary catalytic systems, based on Pt, were studied with the aim to reduce the Pt-CO bond strength or to promote the electrocatalytic oxidation of CO by water, which is abundant in the PEMFC environment. In chapter 1 is reported the literature information about H2 technology, such as H2 production and cleaning methods and the transport and storage infrastructure. In chapter 2, the basic thermodynamic and kinetic rules of fuel cells operation are referred together with the types of fuel cells and the possible applications. In chapter 3 the structural characteristics of the PEMFCs are outlined and the basic catalytic systems that have been studied for the fuel cell reactions are reviewed. The catalysts’ characterization methods, as well as the experimental procedures utilized in this thesis, are briefly described in chapter 4. In chapter 5 the effect of TiO2 support on the CO chemisorption’s and oxidative properties of Pt was investigated in a single PEMFC configuration. The activity of the CO electrooxidation reaction was enhanced and the Pt-CO bond was destabilized comparing to a commercial Pt/C catalyst. In chapter 6 the CO adsorption/desorption properties were studied by Infrared Spectroscopy, on a series of Pt-Mo catalysts supported on anatase TiO2. The presence of Mo oxides on the catalyst surface reduces significantly the CO desorption temperature in comparison to monometallic TiO2 supported Pt, suggesting the weak CO bonding on the catalytic surface. However, in the presence of H2, the Pt-CO bond strengthens, resulting in higher CO desorption temperature for all the catalysts tested. This was explained on the basis of competitive reaction of H2 with the oxidic surface species, originating from the TiO2 support and the surface Mo oxides. The CO electrooxidation activity of a Pt4Mo/C catalyst is described in chapter 7, considering the destabilizing effect of Mo on the Pt-CO bond. The surface Mo oxide species were able to dissociate H2O at potential values that coincide with the potential window of the PEMFC anode operation. This catalyst oxidized CO under open circuit conditions through the water gas shift reaction and at temperature as low as 60oC. However, the catalytic activity was not homogeneously distributed on the entire catalyst surface, but it was located at the Pt/MoOx interface, with the monometallic Pt sites to be strongly susceptible to CO poisoning. Furthermore, Mo was sensitive to dissolution phenomena in the hydrous acidic environment of the PEMFC for potentials higher than 0.2 V vs. rhe. Finally, in chapter 8 is described the interaction of CO with a ternary Pt-Ru-Co catalyst surface, in comparison to a commercial PtRu/C catalyst. The ternary catalyst was more active for the adsorbed CO electrooxidation, with a lower apparent activation energy than the bimetallic commercial one. The ternary catalyst exhibited zero reaction order with respect to CO partial pressure, while the PtRu/C showed negative reaction order due to competitive adsorption of CO and oxidic species for the same catalytic sites. The kinetic rate constant of the CO electrooxidation reaction for the ternary catalyst showed stronger dependence on the applied potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call