Abstract

본 연구에서 광산수의 재활용을 위해 축전식 탈염공정을 적용하였다. 이를 위해 이온교환폴리머를 코팅한 탄소 전극을 활용하였는데 본 성능을 관찰하기 위해 이온교환폴리머를 코팅하지 않은 탄소 전극으로 광산수의 탈염 운전을 수행하고 비교분석하였다. 또한, 광산수의 높은 농도가 축전식 탈염공정에 미치는 영향을 조사하기 위해 저농도의 기수(NaCl 200 ppm)를 활용한 운전 성능 비교 역시 수행하였다. 연구 결과 이온교환폴리머를 코팅한 탄소 전극을 활용한 광산수 탈염 효율 및 제거양 모두 그렇지 않은 전극에 비해 높았고 에너지 소모량은 더 적게 나타났다. 이는 높은 비패러데이 전류, 높은 염농도에 따른 낮은 용액 저항, 전극 기공 내에서의 이중층 중첩효과에 기인하는 것으로 판단되었다. 또한, 이온교환폴리머를 코팅한 전극을 활용한 기수 탈염 운전 결과 낮은 염농도에 따라 용액의 저항이 높아지고, 제거 대상의 염의 양이 낮아 광산수에 비해 매우 높은 효율을 보였으나, 제거양은 매우 낮음을 알 수 있었다. In this study, capacitive deionization (CDI) was introduced for desalination of mining water. Ion-exchange polymer coated carbon electrodes (IEE) were used in CDI to desalt mining water. The CDI performance using the IEE for desalination of mining water was carried out and then was compared with that using general carbon electrodes without ion-exchange polymer coating (GE). Moreover, to investigate the effect of the concentration of influent solutions on CDI performance, the CDI performance using the IEE for desalination of brackish water (NaCl 200 ppm) was also performed and analyzed. As a result, the higher salt removal efficiency, rate and the lower energy consumption in the CDI process using the IEE and mining water were obtained compared with those using the GE and mining water. It is mainly due to higher non-Faradaic current, low ohmic resistance of the influent, overlapping effect of electric double layers in micropore of the electrode. In addition, the CDI process using the IEE and brackish water shows much higher salt removal efficiency and lower salt removal rate than that using the IEE and mining water. This results from the lower concentration (i.e., higher ohmic resistance) and salt amount of the influent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call