Abstract
Исследуется одномерная система уравнений для дискретной модели газа (система уравнений Карлемана). Система Карлемана является кинетическим уравнением Больцмана модельного одномерного газа, состоящего из двух частиц. Для этой модели не сохраняются импульс и энергия. На примере модели Карлемана хорошо видна суть уравнения Больцмана, которое описывает смесь «конкурирующих» процессов: релаксацию и свободное движение. Доказывается существование глобального решения задачи Коши для возмущения состояния равновесия с периодическими начальными данными. Впервые устанавливается скорость стабилизации к состоянию равновесия (экспоненциальная стабилизация).
Highlights
This article explores a one-dimensional system of equations for the discrete model of a gas (Carleman system of equations)
The Carleman system is the Boltzmann kinetic equation of a model one-dimensional gas consisting of two particles
We prove the existence of a global solution of the Cauchy problem for the perturbation of the equilibrium state with periodic initial data
Summary
Использование Общероссийского математического портала MathNet.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement Параметры загрузки: IP: 54.204.77.23 8 ноября 2021 г., 15:26:50
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.