Abstract

The creation of advanced spacecraft requires developing new and improving existing now liquid-propellant rocket engines. In this case, one of the decisive factors determining their perfection is the design of the nozzle head of the combustion chamber, as well as the adopted scheme of mixing and burning rocket fuel. Thus, the optimization of the geometric and operating parameters of the combustion chamber is an urgent problem, which can be solved using both experimental and computational methods. The use of the latter can significantly reduce the volume of expensive bench tests. The article describes the study of a liquid-propellant engine chamber with a slotted nozzle head, in particular, the effect of the reduced length on the efficiency of the working process, assessed by the chamber coefficient. A mathematical model of the working process behaviour in the combustion chamber of a liquid-propellant rocket engine on oxygen-kerosene fuel components has been compiled. An algorithm for solving the equations of the mathematical model for the studied mixture formation scheme has been developed. Parametric calculations were performed and the main factors influencing the characteristics of the working process in the combustion chamber of a liquid-propellant engine with a slotted nozzle head were determined. Comparison of the calculation results according to the proposed method and the available results of bench tests showed their good convergence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.