Abstract

The objective of this study was to investigate the dissolution patterns of variety of orally administered drug products available on the market. It aimed to understand their dissolution behaviors on the basis of the biopharmaceutics classification system (BCS) concept. On the tenets of BCS, several active pharmaceutical ingredients were selected: fluoxetine hydrochloride (class I), naproxen sodium (class ll), pyridostigmine bromide (class III), furosemide (class IV) and simvastatin (class IV). Typical dissolution media used in this study were pH 1.2, pH 4 & 6.8 phosphate buffers, and water. In cases, particular dissolution media specified in the KP and/or USP were used. Dissolution patterns of fluoxetine hydrochloride and pyridostigmine bromide products were characterized by their rapid release In addition, their dissolution characteristics were relatively unaffected by the type of a dissolution medium. Similar dissolution patterns were observed with pH 1.2, pH 4 & 6.8 phosphate buffers and water. By sharp contrast, poor dissolution patterns were noticed with naproxen sodium products, when pH 1.2 and pH 4 phosphate buffer were used. Improvements in its dissolution were achieved by switching the dissolution media to pH 6.8 phosphate buffer or water. Unsatisfactory dissolution data also were observed with a simvastatin product, when it was subject to dissolution tests by use of a surfactant-free pH 1.2, pH 4 & 6.8 phosphate buffers and water. All the release patterns reported in this study were best understood when BCS concepts were implemented. Our results demonstrated that a BCS-based drug classification should be considered first to choose a dissolution test/method and set up dissolution specification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.