Abstract
PACS number: 07.57.-c Purpose: The conditions for formation of a wave with circular polarization and extremely achievable field density amplitude in the set directions of the main observation planes in the far zone, radiated by the oblique impedance wire dipole located over the rectangular perfectly conducting screen are determined. Design/methodology/approach: To solve the 3-D vector problem of diffraction of a field of arbitrarily oriented impedance thin wire dipole on the perfectly conducting rectangular screen the uniform geometric theory diffraction method is applied, and the asymptotic expressions for an electric current of the horizontal impedance wire dipole with electrical length 0.4 ≤ 2 l /λ ≤ 0.6 are used. Findings: The dipole’s slope angles at which the wave with equal amplitudes of orthogonal components of the electric field vector is radiated, and also the corresponding to them ellipticity coefficients and normalized squared absolute values of the electric field vector as functions of the observation angles and the distance between dipole and screen are calculated accounting for the diffraction effects on screen edges. Conclusions: The technique is developed for determination of an impedance wire dipole slope angle with account for the diffraction effects on screen edges at which the circularly polarized wave is radiated. It is shown that by the choice of an appropriate slope angle and distance of the resonant impedance wire dipole from the screen, the circularly polarized radiation with extremely achievable intensity in the given direction in one of the main observation planes can be realized. Key words: rectangular screen, surface impedance, resonant wire dipole, wave, circular polarization, ellipticity coefficient, field amplitude Manuscript submitted 31.03.2016 Radio phys. radio astron. 2016, 21(3): 216-230 REFERENCES 1. WOODWARD, O. W., 1957. A Circularly Polarized Corner Reflector Antenna. IRE Trans. Antennas Propag. vol. 5, is. 1, pp. 290–297. DOI: https://doi.org/10.1109/TAP.1957.1144512 2. NG, T. S. and LEE, K. F., 1982. Theory of Corner Reflector Antenna with Tilted Dipole. IEE Proc. vol. 129. is. 1, pp. 11–17. DOI: https://doi.org/10.1049/ip-h-1.1982.0003 3. Eliseeva, N. P., 2001. Optimizing the Directivity Factor of a Finite Corner Antenna with a Circularly PolarizedRadiation Field. J. Commun. Technol. Electron. vol. 46, no. 8, pp. 891–900. 4. GOROBETS, N. N. and YELISEYEVA, N. P., 2008. Synthesis of a Circular Polarized Field Radiated by an Electric Dipole Located over a Rectangular Screen. J. Commun.Technol. Electron. vol. 53, no. 1, pp. 26–33. DOI: https://doi.org/10.1134/S1064226908010038 5. PIMENOV, YU. V. and KHOD'KOV, D. A., 1990. Radiation of elementary electric vibrator placed above planescreen. Radiotekhnika. no. 11, pp. 60–63 (in Russian). 6. PIMENOV, YU. V. and KHOD'KOV, D. A., 1991. Radiation of elementary electrical vibrator placed parallel to plane rectangular screen. Radiotekhnika. no. 7, pp. 61–63 (in Russian). 7. TSAI, L. L., WILSON, O. R., HARRISON, M. G. and WRIGHT, E. H., 1972. A Comparison of Geometrical Theory of Diffraction and Integral Equation for Analysis of Reflector Antennas. IEEE Trans. Antennas Propag. vol. 20, no. 6, pp. 705–712. DOI: https://doi.org/10.1109/TAP.1972.1140326 8. IVANCHENKO, I. V., KOROLEV, A. M., PAZYNIN, V. L., POPENKO, N. A. and KHRUSLOV, M. M., 2006. The Features of Radiation Pattern Formation of the Monopole Antenna with Finite Screens. Telecommunications and Radio Engineering. vol. 65, is. 20, pp. 1859–1869. DOI: https://doi.org/10.1615/TelecomRadEng.v65.i20.30 9. GOROBETS, N. N., YELISEYEVA, N. P. and ANTONENKO, YE. A., 2012. Optimization of Radiation Characteristics of Wire-Screened Antennas. Telecommunications and Radio Engineering. vol. 71, is. 1, pp. 59–69. DOI: https://doi.org/10.1615/TelecomRadEng.v71.i1.60 10. Yeliseyeva, N. P. and Gorobets, N. N., 2009. Diffraction of radiation of the wire antenna on the rectangular and corner screen. Kharkiv: V. N. Karazin Kharkiv National University Publ. (in Russian). 11. Nesterenko, M. V., 2010. Analytical methods in the theory of thin impedance vibrators. Prog. Electromagn. Res. B. vol. 21, pp. 299–328. 12. NESTERENKO, M. V., KATRICH, V. A., PENKIN, Y. M., DAKHOV, V. M. and BERDNIK, S. L., 2011. Thin Impedance Vibrators. Theory and Applications. New York: Springer Science+Business Media Publ. DOI: https://doi.org/10.1007/978-1-4419-7850-9_1 13. YELISEYEVA, N. P., BERDNIK, S. L., KATRICH, V. A. and NESTERENKO, M. V., 2015. Electrodynamic characteristics of horizontal impedance vibrator located over a finite-dimensional perfectly conducting screen. Prog. Electromagn. Res. B. vol. 63. pp. 275–288. DOI: https://doi.org/10.2528/PIERB15043003 14. YELISEYEVA, N. P., BERDNIK, S. L., KATRICH, V. A. and NESTERENKO, M. V., 2016. Directional and polarization radiation characteristics of a horizontal impedance vibrator located above a rectangular screen. J. Commun. Technol. Electron. vol. 61, no. 2. pp. 99–111. DOI: https://doi.org/10.1134/S1064226908010038
Highlights
Применение полей волны с вращающейся круговой или эллиптической поляризацией представляет большой практический интерес для увеличения дальности обнаружения целей в радиолокации, обеспечения надежности приема и передачи сигналов радиотелеуправления летающими объектами, обеспечения электромагнитной совместимости радиоэлектронных систем
Электродинамические характеристики вибраторов с постоянным и переменным по их длине распределенным импедансом, расположенных как в неограниченной материальной среде, так и над бесконечной идеально проводящей плоскостью, исследовались в [11, 12]
V. Directional and polarization radiation characteristics of a horizontal impedance vibrator located above a rectangular screen // J
Summary
Где ZS (s) – равномерный поверхностный импеданс вибратора, нормированный на волновое сопротивление свободного пространства Z0 120 Ом; s – локальная координата, связанная с осью вибратора; j – мнимая единица; zi (s) – внутренний погонный импеданс вибратора, Ом/м. Рассмотрим излучающую систему, состоящую из наклонного импедансного вибратора с радиу- Рис. Решение “квазиодномерного” интегрального уравнения для тока J (s) импедансного вибратора в свободном пространстве при zi const и произвольном возбуждении вибратора получено в [11, 12] асимптотическим методом усреднения с точностью до членов порядка 2. В настоящей работе рассматриваем случай возбуждения вибратора в его геометрическом центре С сосредоточенной электродвижущей силой с амплитудой V0. Знание распределения тока (2а) позволяет рассчитать входной импеданс вибратора. 1), удаленного на расстояние h от бесконечной идеально проводящей плоскости, при том же способе возбуждения выражения для тока и входного импеданса получены в [11, 12] в следующем виде:. ), k l определена в [11,12,13,14], PHs PlFs PlMir
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.