Abstract

The aim of the present study is the further understanding and quantification of transport phenomena in porous media and their connection with the phenomena in the scale of a few pores. The extension of the results from the pore-scale to the scale of the porous medium is not obvious and for this reason the representation of the porous medium is treated both with pore-networks and digital reconstruction. Specifically, in this study it is examined the dispersion of molecules of a solute in porous networks, a new reconstruction technique is presented for heterogeneous granular materials and also a methodology is developed for the study of gas flow in reconstructed porous media in the transient regime, where the mean free path of the gas molecules is comparable with the characteristic length of the pores and thus the continuum description is no longer valid. The effect of the mixing in the pores or the junctions of the pores on the dispersion of molecules of a solute in porous media is examined through various simulation techniques with emphasis on the details of the flow and mass transport in the area of the junction. It was found that a new random-walk technique is reproducing with good accuracy the dispersion coefficient for low and average values of the Peclet number, due to the fact that it takes into account the backwards, with respect to the main direction of the flow, movement of the molecules and the different residence time in each branch. Furthermore, a new reconstruction technique was developed for porous media. The technique is based on 2-phase lattice Boltzmann model, which describes the evolution of a gas-liquid system under the influence of the surface tension. This mechanism leads to the creation of correlated structures, where the morphology of the porous medium and the correlation factor are determined by the operating parameters of the model. The technique was applied successfully for the reconstruction of a real soil sample, starting from the information that is solely given from a microphotograph of a statistically adequate section of the material. Finally, the gas flow through porous media was examined at moderate Knudsen numbers, where the mean diameter of the pores is of the same order of magnitude with the mean free path of the gas molecules. The study was done mainly with the mesoscopic DSMC technique. The credibility of the technique was examined through the study of the isothermal gas flow through parallel plates. Additionally, the dynamic viscosity of a gas under rarefaction conditions was calculated and its dependence on the Knudsen number was shown. It was found that the results are approximated satisfactorily with an analytical Bosanquet-type equation that relates the effective viscosity with its value at the continuum limit and with the Knudsen number. Furthermore, it was studied for the first time with the DSMC method the gas flow through reconstructed porous media. The Klinkenberg effect was confirmed and the linear dependence of the permeability coefficient on the inverse pressure was shown. Finally an alternative approach was used for the calculation of gas flow though porous media in the transient regime through the development of a lattice Boltzmann model suitably modified for rarefied gas flows. The model was tested for the case of flow through parallel plates as well as for the case of flow through porous media and the agreement with the DSMC method was very satisfactory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call