Abstract

Purpose: analysis of the rice production water intensity and justification of measures for water saving, allowing to reduce the use of water resources for growing rice and companion crops, to reduce water intensity of production of a production unit while maintaining high yields. Materials and methods. Methods of analysis and synthesis to substantiate the rice and companion crops irrigation regime were used. Results. The analysis of long-term studies of the FSBSE “RSRILIP” showed that the water demand design norms for rice irrigation are exceeded by 1.5–2.0 times. For example, in the low-water year 2020, the rice irrigation rates on the rice systems of Rostov region fluctuated in agricultural enterprises from 27 to 47 thousand cubic m/ha. To save water resources, the main measures should be: maintaining the reclamation network and hydraulic structures in good condition, planned water use and water distribution, improving irrigation equipment and technologies. The first place in terms of influence on the value of the irrigation rate is the evenness of the check surface, since if the height in the check is more than 0.03–0.05 m from the design, the irrigation rate can double due to the need to create a given layer of water over the entire check area. It was found that the irrigation rate value is also influenced by the natural moisture content of the territory, the granulometric composition of the soil, the rate of filtration, the depth of groundwater, the degree of soil salinity and alkalinization. Depending on these factors under the conditions of Rostov region, the irrigation rate for rice can vary from 27 to 36 thousand cubic m/ha and more. Conclusions. To reduce the irrigation norms, irrigation regimes of the shortened type of flooding and obtaining seedlings on natural moisture reserves are recommended. The rice and companion crops cultivation using the ridge technology with periodic sprinkler irrigation or check flooding requires study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.