Abstract

A model of thermal electron emission enhanced by the electric field (thermo-field emission) from the metal cathode substrate into a thin insulating film formed on its surface is developed. A system of equations for the cathode surface temperature in the arc discharge and the electric field strength in the film, providing the required discharge current density, is formulated. It is shown that existence of the dielectric film can result in a considerable reduction of the cathode temperature in the discharge due to lower potential barrier height at the metal-insulator boundary than at the metal-discharge boundary in case of the metal cathode without the film. It is found that due to an enhancement of thermal emission of electrons into the film by the electric field generated in it, an additional decrease of the cathode temperature by about 100 K takes place.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.