Abstract

The possibility of the substitution of a two-dimensional distributed radar object by a 4-point partly coherent model is considered. As a criterion of adequacy we accepted the coincidence of the angle noise distribution function for the model and the substituted object. It is shown that the proposed four-point configuration can be represented as two orthogonal equivalent two-point models. Relations are obtained for calculating the parameters (power ratios of the signals and coefficients of the correlation matrix) of the signals of the four-point model through the parameters of the signals of the equivalent two-point models. The signal parameters of the equivalent two-point models can be calculated for the given parameters of the joint distribution of azimuthal and elevation noises. These relations obtained for the two-dimensional model are the result of this work. The results obtained were tested using numerical experiments for the test values of the parameters of the angle noise distribution function. To generate samples of signals whose correlation matrix has the required form the linear transformation method was used. The parameters of the distribution function of the simulated angle noise were estimated by the method of matching moments. The results of numerical experiments confirm the reliability of the obtained ratios. They can be used in mathematical and simulation modeling of distributed radar objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.