Abstract
There is a thin absolutely rigid inclusion that in a cross-section represents three segments broken line in an infinite elastic medium (matrix) that is in the conditions of antiplane strain. The inclusion is under the action of harmonic shear force Pe^{iwt} along the axis Oz. Under the conditions of the antiplane strain the only one different from 0 z-component of displacement vector W (x; y) satisfies the Helmholtz equation. The inclusion is fully couple with the matrix. The tangential stresses are discontinuous on the inclusion with unknown jumps. The method of the solution is based on the representation of displacement W (x; y) by discontinuous solutions of the Helmholtz equation. After the satisfaction of the conditions on the inclusion the system of integral equations relatively unknown jumps is obtained. One of the main results is a numerical method for solving the obtained system, which takes into account the singularity of the solution and is based on the use of the special quadrature formulas for singular integrals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.