Abstract
Histogram equalization generally has the disadvantage that if the distribution of the gray level of an image is concentrated in one place, then the range of the gray level in the output image is excessively expanded, which then produces a visually unnatural result. However, a gamma transformation can reduce such unnatural appearances since it operates under a nonlinear regime. Therefore, this paper proposes a new histogram equalization method that can improve image quality by using a gamma transformation. The proposed method 1) derives the proper form of the gamma transformation by using the average brightness of the input image, 2) linearly combines the earlier gamma transformation with a CDF (Cumulative Distribution Function) for the image in order to obtain a new CDF, and 3) to finally perform histogram equalization by using the new CDF. The experimental results show that relative to existing methods, the proposed method provides good performance in terms of quantitative measures, such as entropy, UIQ, SSIM, etc., and it also naturally enhances the image quality in visual perspective as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: KIISE Transactions on Computing Practices
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.