Abstract

Modern computer graphics is based on methods of computational geometry. The curves and surfaces’ description is based on apparatus of spline functions, which became the main tool for geometric modeling. Methods of projective geometry are almost not applying. One of the reasons for this is impossibility to exactly construct a second-order curve passing through given points and tangent to given straight lines. To eliminate this defect a computer program for second order curves construction has been developed. The program performs the construction of second-order curve’s metric (center, vertices, asymptotes, foci) for following combinations: • The second-order curve is given by five points; • The second-order curve is given by five tangent lines; • The second-order curve is given by a point and two tangent lines with points of contact indicated on them; • The parabola is given by four tangent lines; • The parabola is given by four points. In this paper are presented algorithms for construction a metric for each combination. After construction the metric the computer program written in AutoLISP language and using geometrically exact projective algorithms which don’t require algebraic computations draws a second-order curve. For example, to construct vertices and foci of two parabolas passing through four given points, it is only necessary to draw an arbitrary circle and several straight lines. To construct a conic metric passing through five given points, it is necessary to perform only three geometrically exact operations: to construct an involution of conjugate diameters, to find the main axes and asymptotes; to note the vertices of desired second-order curve. Has been considered the architectural appearance of a new airport in Simferopol. It has been demonstrated that a terminal facade’s wavelike form can be obtained with a curve line consisting of conic sections’ areas with common tangent lines at junction points. The developed computer program allows draw second-order curves. The program application will promote the development of computer graphics’ tools and techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.