Abstract

Introduction. Plasma spraying is one of the modern and effective methods for coatings application for various purposes and compositions. With the help of thermal plasma flows, it is possible to spray almost any powder materials (ceramic, metal, metal-ceramic). Plasma spraying of multilayer protective coatings can be successfully used to increase the durability of pierced mandrels, which are the main tool in the production of hollow billets. The purpose of this work is to study the chemical composition, structure, and microhardness of multilayer high-temperature coatings of two different compositions deposited by plasma spraying, which are supposed to be used to increase the durability of pierced mandrels. Materials and research methods. The deposition of multilayer coatings of two compositions was carried out on a plasma-powder spraying unit with contact excitation of an arc discharge UPN-60KM TSP2017. Coatings were obtained by sequential deposition of three layers with different powder compositions. After deposition of all three coating layers, oxidative annealing was carried out at a temperature of 900°C to form a dense scale layer of FeO + Fe2O3 + Fe3O4 on the surface. The chemical composition of the coatings was studied by X-ray microanalysis using a TESCAN scanning electron microscope with an OXFORD attachment. The microstructure of the coatings was studied using a NEOPHOT metallographic microscope. Phase X-ray diffraction analysis was performed on a SHIMADZU diffractometer in Kα chromium radiation. Microhardness was measured on a LEICA hardness tester at a load of 50 g. Results and discussion. The nature of the distribution of chemical elements over the thickness of the coating, consisting of four layers, is established: an inner metal layer that provides protection against high-temperature corrosion; a transitional metal layer designed to equalize the thermal properties between the layers; α-Fe metal oxide layer and iron oxides and external thermal barrier oxide layer FeO + Fe2O3 + Fe3O4. Coatings are characterized by a non-uniform distribution of structural components and microhardness over its thickness. The microhardness of the inner layer reaches 1,400 HV0.05, the transition layer is 800 HV0.05, and the metal oxide layer is 300 HV0.05.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call