Abstract

Let us recall some classes of rings. A ring R is said to be k-nil-clean if each element can be written as a sum of a nilpotent and k idempotents. A ring R is said to be fine if each non-zero element can be written as a sum of a unit and a nilpotent. A ring R is called nil-good if every element is a nilpotent or a sum of a nilpotent and a unit. And, finally, ring R is called nil-good clean if every element is a sum of a nilpotent, an idempotent, and a unit. In this paper, we continue our work on additive problems in formal matrix rings over residue class rings. We have found necessary and sufficient conditions for the nilpotency of a formal matrix over residue class rings. After that we have shown that a ring of such matrices is (p –1)-nil-clean and nil-good clean. Also, answering the question posed in the previous article of the second co-author, we prove that a ring of formal matrices over residue rings is never nil-good, and, therefore, not fine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.