Abstract

Динамика Ланжевена, метод Монте-Карло и моделирование молекулярной динамики в неявном растворителе требуют больших массивов случайных чисел на каждом шаге расчета. Мы исследовали два подхода в реализации генераторов на графических процессорах. Первый реализует последовательный алгоритм генератора на каждом потоке в отдельности. Второй основан на возможности взаимодействия между потоками и реализует общий алгоритм на всех потоках в целом. Мы покажем использование этих подходов на примере алгоритмов Ran 2, Hybrid Taus и Lagged Fibonacci. Для проверки случайности полученных чисел мы использовали разработанные генераторы при моделировании динамики Ланжевена N независимых гармонических осцилляторов в термостате. Это позволило нам оценить статистические характеристики генераторов. Мы также исследовали производительность, использование памяти и ускорение, получаемое при переносе алгоритма с центрального на графический процессор.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.