Abstract

In this paper, the experimental equipments for ventilated supercavitation in cavitation tunnel is constructed and the basic data of ventilated supercavitation regard to the entrainment coefficient and Froude number is fulfilled. The experiments are conducted for the disk cavitator with injecting air and the pressure inside cavity and the shape of cavity are measured. As the entrainment coefficient increases while the Froude number is kept constant, the ventilated cavitation number decreases to a minimum value which decreases no more even with increasing the air entrainment. The minimum value of ventilated cavitation number, caused by the blockage effect, decreases according to increasing the diameter ratio of test section to cavitator. The cavity length is rapidly enlarged near the minimum cavitation number. In low Froude numbers, the cavity tail is floating up due to buoyancy and the air inside the cavity is evacuated from its rear end with twin-vortex hollow tubes. However, in high Froude numbers, the buoyancy effect is almost negligible and there is no more twin-vortex tubes so that the cavity shape becomes close to axisymmetric. In order to measure the cavity length and width, the two methods, which are to be based on the cavity shapes and the maximum width of cavity, are applied. As the entrainment coefficient increases after the ventilated cavitation number gets down to the minimum cavitation number, the cavity length still increases gradually. These phenomenon can be confirmed by the measurement using the method based on the cavity shapes. On the other hand, when the method based on the maximum width of cavity is used, the length and width of the cavity agree well with a semi-empirical formular of

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.