Abstract

It is necessary to estimate manoeuvring characteristics of submerged bodies at the design stage in order to ensure the safe operations. In this study, added mass coefficients in the mathematical model of submerged bodies are estimated by captive model tests and numerical calculations. Two kinds of models, MARIN ‘BB2’submarine model and AUV (Autonomous unmanned vehicle) model are utilized in the forced oscillation tests. Compared to BB2 submarine, AUV with cylindrical type hull form shows relatively small added masses in roll, pitch, and yaw directions. Next, numerical calculations based on potential theory are performed under the assumption that viscous effects on inertia forces are negligible. Added masses obtained by numerical calculations are in good agreements with forced oscillation test results. And if slow manoeuvres of submerged bodies are presumed, some of velocity coupled terms can be approximated by combinations of added mass coefficients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.