Abstract

Currently, the problems of distortion of measurement data by noise and the appearance of un-certainties in quality criteria have caused increased interest in research in the field of spline approx-imation. At the same time, existing methods of minimizing empirical risk, assuming that the noise is a uniform distribution with heavier tails than Gaussian, limit the scope of application of these studies. The problem of estimating noise-distorted data is usually based on solving an optimi-zation problem with a function containing uncertainty arising from the problem of finding optimal parameters. In this regard, the estimation of distorted noise cannot be solved by classical methods. Aim. This study is aimed at solving and analyzing the problem of spline approximation of data under uncertainty conditions based on the parametrization of control and the gradient projec-tion algorithm. Methods. The study of the problem of spline approximation of noisy data is carried out by the method of approximation of the piecewise constant control function. In this case, para-metrization of the control is possible only for a finite number of break points of the first kind. In the framework of the experimental study, the gradient projection algorithm is used for the numerical solution of the spline approximation problem. The proposed methods are used to study the parameters of the problem of spline approximation of data under conditions of uncertain-ty. Results. The numerical study of the control parametrization approach and the gradient projec-tion algorithm is based on the developed software and algorithmic tool for solving the problem of the spline approximation model under uncertainty. To evaluate the noise-distorted data, numerical experiments were conducted to study the model parameters and it was found that increasing the value of the parameter α leads to an increase in accuracy, but a loss of smoothness. In addition, the analysis showed that the considered distribution laws did not change the accuracy and convergence rate of the algorithm. Conclusion. The proposed approach for solving the problem of spline approx-imation under uncertainty conditions allows us to determine the problems of distortion of measure-ment data by noise and the appearance of uncertainties in the quality criteria. The study of the model parameters showed that the constructed system is stable to the error of the initial approxima-tion, and the distribution laws do not significantly affect the accuracy and convergence of the gra-dient projection method.

Highlights

  • Введение В настоящее время исследования в области сплайновой аппроксимации стали наиболее актуальными в прикладных задачах

  • В связи с этим данная задача относится к задаче с неопределенностью

  • Традиционный вид теоретических сплайнов управления основан на оптимизации L2 и имеет два основных недостатка

Read more

Summary

Краткие сообщения

Данное исследование направлено на решение и анализ задачи сплайновой аппроксимации данных в условиях неопределённости на основе параметризации управления и алгоритма проекции градиента. Предложенные методы применены для исследования параметров задачи сплайновой аппроксимации данных в условиях неопределённости. Численное исследование подхода к параметризации управления и алгоритма проекции градиента проведено на основе разработанного программно-алгоритмического средства для решения задачи сплайновой модели аппроксимации в условиях неопределенности. Предложенный подход для решения задачи сплайновой аппроксимации в условиях неопределенности позволяет определить проблемы искажения данных измерений шумом и появления неопределенностей в критериях качества. Данная работа направлена на исследование задачи сплайновой аппроксимации данных в условиях неопределённости на основе параметризации управления и алгоритма метода проекции градиента. 3. Методы решения задачи сплайновой аппроксимации данных Для численного решения задачи (2)–(4), (8) представим управление кусочно-постоянной функцией с конечным числом переключений методом параметризации управления.

Детерминированная задача выбора оптимального параметра
Исследование влияния закона распределения шумов
Закон распределения J
ОБРАЗЕЦ ЦИТИРОВАНИЯ
FOR CITATION

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.