Abstract

An ROP attack creates gadget sequences which consist of existing code snippets in a program, and hijacks the control flow of a program by chaining and executing gadget sequences consecutively. Existing defense schemes have limitations in that they cause high execution overhead, an increase in the binary size overhead, and a low applicability. In this paper, we solve these problems by introducing zero-sum defender, which is a fast and space-efficient mitigation scheme against ROP attacks. We find a fundamental property of gadget execution in which control flow starts in the middle of a function without a call instruction and ends with a return instruction. So, we exploit this property by monitoring whether the execution is abused by ROP attacks. We achieve a very low runtime overhead with a very small increase in the binary size. In our experimental results, we verified that our defense scheme prevents real world ROP attacks, and we showed that there is only a 2% performance overhead and a 1% binary size increase overhead in several benchmarks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.