Abstract

The theory for a fault-tolerant control of homopolar magnetic bearings is developed. New coil winding law is utilized such that control fluxes are isolated for an 8-pole homopolar magnetic bearing. Decoupling chokes are not required for the fault tolerant magnetic bearing since C-core fluxes are isolated. If some of the coils or power amplifiers suddenly fail, the remaining coil currents change via a distribution matrix such that the same magnetic forces are maintained before and after failure. Lagrange multiplier optimization with equality constraints is utilized to calculate the optimal distribution matrix that maximizes the load capacity of the failed bearing. Some numerical examples of distribution matrices are provided to illustrate the theory. Simulations show that very much the same dynamic responses (orbits or displacements) are maintained throughout failure events while currents and fluxes change significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.