Abstract

Noise measurement technique of fiber-optical radiation sources was developed. The experimental device for carrying out the specified measurements was done. The analysis of noise sources in spontaneous emission amplifiers showed that the main source is phase noise of spontaneous radiation. When optical radiation is detected in the photodetector, additional noise appears in the output electrical signal. In it, additional noise of the photodetector is added to the noise of radiation source: shot noise arising from the conversion of optical signal into electrical and thermal noise of the converter elements. Spectrum analyzer is used to separate phase noise of spontaneous emission and noise of photodetector. The measurements record two noise spectra, one – the total noise of spontaneous emission amplifier and photodetector, the other – the noise spectrum of one photodetector. As a result of mathematical processing phase noise of radiation source is allocated. The spontaneous emission amplifier works as a part of fiber-optical gyroscope. The integrated optical phase modulator circuit and synchronous detector operating at frequency of 100 kHz are used to reduce noise. Therefore in these researches noise analysis is performed in the narrow spectral range near the specified frequency. Thus, the relative optical noise levels in of 1 Hz bandwidth for several spontaneous emission amplifiers were measured. They were on the order −130 dB in compared to the intensity of effective signal. Then relative levels of optical noise from sources with different emission bands were investigated. It has been established that with increase in emission bandwidth, the relative magnitude of optical noise decreases. The results obtained qualitatively coincide with results of theoretical calculations. This conforms the correctness of developed methodology for measuring the relative optical noise level of quantum generators.

Highlights

  • Noise measurement technique of fiber-optical radiation sources was developed

  • The analysis of noise sources in spontaneous emission amplifiers showed that the main source is phase noise of spontaneous radiation

  • When optical radiation is detected in the photodetector, additional noise appears in the output electrical signal

Read more

Summary

Введение

В настоящее время точность определения положения тела в пространстве играет важную роль. С этой целью широко используются навигационные приборы для определения координат в пространстве, такие как акселерометры и гироскопы [1]. Наиболее распространенными на данный момент являются оптические гироскопы, действие которых основано на эффекте Саньяка. Благодаря использованию ЭСВИОИ в качестве широкополосного источника оптического излучения в волоконно-оптическом гироскопе (ВОГ) удается добиться повышения стабильности масштабного коэффициента волоконного интерферометра и точности за счет снижения дрейфов ВОГ и уменьшения шумов. Источники излучения являются одним из ключевых устройств волоконнооптических систем. Их работа зависит от многих факторов, одним из которых является наличие шумов – неконтролируемых сигналов, определяющих минимальный уровень оптического сигнала, который может быть воспринят приёмным устройством. Целью настоящей работы является разработка методики определения шумовых характеристик волоконно-оптических источников излучения

Усилитель спонтанной эмиссии
Основные источники шума в волоконно-оптических гироскопах
Относительная интенсивность шума
Методика исследования оптических шумов
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.