Abstract

The distribution of cold and temperate ice and water in polythermal glaciers significantly affects their dynamics, thermal and hydrological regime. Radar techniques are an effective remote method of their studies that allows one to determine a glacier thickness by the delay time and to estimate the water content in temperate ice and at bedrock by the intensity of reflections from the interface between cold and temperate ice and the glacier bed. In case study of Austre Gronfjordbreen in Spitsbergen and Central Tuyksu glacier in Tien Shan we consider the features of their hydrothermal structure in spring and summer periods using the data of ground-based radio-­echo sounding at frequency of 20 MHz. To estimate the relative water content, we used data from measurements of relative power reflections from the cold-temperate ice interface, at the bedrock, and from the temperate ice body. In these glaciers (Austre Gronfjordbreen and Central Tuyksu), the average thickness of cold and temperate ice is, respectively, 61 ± 6 and 27 ± 2 m, and 39 ± 4 and 20 ± 2 m, the volume of cold ice is 0.466 ± 0.005 km 3 and 0.044 ± 0.002 km 3 , and volume of temperate ice is 0.104 ± 0.001 and 0.034 ± 0.001 km 3 . Warm ice contains 2080 × 10 3 and 680 × 10 3 m 3 of water, respectively, with an average content of 2%. Measurements along the longitudinal profiles of these glaciers showed that in some parts on Austre Gronfjordbreen in the spring period the average intensity of reflections from the cold­temperate ice interface and the bedrock is −0.02 – −26.3 and −6.0 – −11.8 dB, respectively, and at the whole profile this is −13.36 dB. At Central Tuyuksu glacier the spring values are −14.5 – −32.4 and −29.6 dB, respectively. We attribute such differences of glaciers to the different water content in the temperate ice below and above these boundaries, to the specific distribution of the ice facies zones and glacial nourishment, to the different intensity of surface melting in the spring and summer periods, and to the different crevassing and velocity of glaciers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.