Abstract

Diseases of agricultural crops are the main reason for decreased yield and quality of product. Blast (causative agent: Pyricularia oryzae Cav.) is the most harmful disease on rice fields. Economic damage caused by the pathogen is significant in all areas of the world’s rice cultivation. The most effective, economically justified and environmentally friendly strategy for combating it is development of resistant varieties. The application of DNA markers linked to loci of resistance to blast is relevant in this area. This makes it possible to significantly shorten the breeding process and promptly develop disease-resistant rice forms. In this regard, the aim of the work was to develop source material for breeding as well as highly productive rice varieties and lines with genes of resistance to blast based on the use of molecular marking method. To achieve this goal, we have launched a program since 2007 aimed at introduction of the blast resistance Pi-ta gene, effective for the south of Russia, into the domestic rice cultivar Flagman. After a number of recurrent crosses, the breeding material was obtained, which was studied for economically valuable traits in breeding nurseries. As a result of evaluation and rigorous discarding as well as according to the results of a phytopathological test for blast resistance, several lines were identified that have high indicators of milled rice quality, resistance to blast, yield and economically valuable traits. Rice accession KP-171-14 with the Pi-ta gene, adapted to growing conditions in the south of Russia, resistant to the Krasnodar population of P. oryzae, and having high yield and grain quality, in 2017 was submitted for State Variety Trials (SVT) under the name Alyans. Accessions KP-30 and KP-23 are tested for economically valuable traits and disease resistance in competitive variety trials. The best accession will be submitted to SVT. The introduction and cultivation of such varieties will reduce the use of chemical protection products, obtain environmentally friendly agricultural products and avoid contamination of grain ecosystems

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call