Abstract

The article considers the influence of the treatment modes by N2+ and Ar+ ions beams on the physical and mechanical properties of zirconia ceramics. Surface modification of zirconia ceramics was performed using two modes of ion treatment — pulsed and continuous. The pulse mode of treatment by N2+ ions was realized at an accelerating voltage of 250 – 300 kV, current density j = 150 – 200 A/cm2, and energy density W = (3.5 and 5) ± 5 % J/cm2. The continuous mode of treatment by Ar+ ions was realized at an accelerating voltage of 30 kV and an ion current density of 300 and 500 μA/cm2. The fluence of the Ar+ ion beam varied from 1016 to 1018 cm–2. It is established that the pulsed mode of ion treatment leads to the melting and recrystallization of the surface of ceramics. It is shown that this treatment leads to a violation of the oxygen stoichiometry in ceramics and, as a result, there is an appearance of electrical conductivity in the near-surface layers, the layers of zirconia ceramics become conductive. It was established that the continuous mode of ion treatment does not lead to the melting and recrystallization of the ceramics surface, but is accompanied by its slight etching. It is shown that under the action of continuous ion treatment, microhardness increases (by 14 %). Hardening of the surface layers of ceramics is observed at a depth that exceeds the average projected range of Ar+ ion by 103 times.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call