Abstract

In this work, an experimental study of the upgrading of heavy oil under the influence of supercritical water (SCW) at temperatures of 380 °C, 420 °C and 440 °C was carried out. The analysis of the composition and properties of liquid and solid products was carried out using a set of methods including SARA analysis, gas chromatography (GC), IR spectroscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray fluorescence spectrometry. The results show that with increase of the SCW temperature, an increase in the amount of gaseous products and coke occurs, while the yield of liquid products, their viscosity and density decrease. Data from SARA analysis and gas chromatography showed that with the increase of temperature to 420 °C, the content of the fraction of resins and asphaltenes decreases and the amount of saturated hydrocarbons increases to a maximum value. Similarly, at 420 °C, the vanadium (V) content decreases by 61.66 % in heavy oil, where it should be noted that the vanadium content is very sensitive to temperature changes. The elemental analysis data confirm that, under the influence of SCW, the sulfur content in oil decreases from 4.21 % to 2.43 %. According to the results obtained, it can be noted that the choice of temperature under the action of SCW significantly affects the upgrading of heavy oil. The most optimal temperature for the investigated heavy oil is 420 °C. The use of SCW is of practical interest for upgrading heavy oil, including reservoir conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.