Abstract

It is shown that the localized and quasi-local stationary states exist near a thin defect layer with nonlinear properties separating a linear medium from a non-linear medium of Kerr type. Localized states are characterized by a monotonically decreasing field amplitude on both sides of the interface. Quasi-local states are described by a field in the form of a standing wave in a linear medium and monotonously decreasing in a nonlinear medium. The contacts with nonlinear self-focusing and defocusing media are analyzed. The mathematical formulation of the proposed model is a system of linear and nonlinear Schrödinger equations with a potential that is nonlinear with respect to the field and which simulates a thin defect layer with nonlinear properties. Dispersion relations determining the energy of local and quasi-local states are obtained. The expressions for energies were obtained explicitly in limiting cases and the conditions for their existence were indicated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.