Abstract

The study considers the high maneuverability flight and path optimization is conducted to investigate the appropriate generation of the lift and thrust considering the angle of the stroke plane. The path optimization problem is defined according to the various purposes of the high maneuverability flight. The flying purposes are to maximize thrust force, lift force and both lift and thrust forces. The flapping motion of the airfoil is made by a combined sinusoidal plunging and pitching motion in each problem. The optimization process is carried out by using well-defined surrogate models. The surrogate model is determined by the results of two-dimensional computational fluid dynamics analysis. The Kriging method is used to make the surrogate model and a genetic algorithm is utilized to optimize the surrogate model. The optimization results show the flapping motions for the high maneuverable flight. The effects on the generation of lift and thrust forces are confirmed by analyzing the vortex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.