Abstract
In this paper, a Bayesian classifier based on PCA (principle component analysis) is proposed to classify underwater transient signals using order LPC (linear predictive coding) coefficients as feature vector. The proposed classifier is composed of two steps. The mechanical signals were separated from biological signals in the first step, and then each type of the mechanical signal was recognized in the second step. Three biological transient signals and two mechanical signals were used to conduct experiments. The classification ratios for the feature vectors of biological signals and mechanical signals were 94.75% and 97.23%, respectively, when all 16 order LPC vector were used. In order to determine the effect of underwater noise on the classification performance, underwater ambient noise was added to the test signals and the classification ratio according to SNR (signal-to-noise ratio) was compared by changing dimension of feature vector using PCA. The classification ratios of the biological and mechanical signals under ocean ambient noise at 10dB SNR, were 0.51% and 100% respectively. However, the ratios were changed to 53.07% and 83.14% when the dimension of feature vector was converted to three by applying PCA. For correct, classification, it is required SNR over 10 dB for three dimension feature vector and over 30dB SNR for seven dimension feature vector under ocean ambient noise environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.