Abstract

We discuss whether on not it is possible to have interpolatory estimates in the approximation of a function of Sobolev`s space by polynomials. The problem of positive approximation is to estimate the pointwise degree of approximation of a function of r times continuously differentiable and positive functions on [0, 1]. Estimates of the form (1) for positive approximation are known ([1, 2]). The problem of monotone approximation is that of estimating the degree of approximation of a monotone nondecreasing function by monotone nondecreasing polynomials. Estimates of the form (1) for monotone approximation were proved in [3, 4, 8]. In [3, 4] is consider r is natural and r not equal one. In [8] is consider r is real and r more two. It was proved that for monotone approximation estimates of the form (1) are fails for r is real and r more two. The problem of convex approximation is that of estimating the degree of approximation of a convex function by convex polynomials. The problem of convex approximation is consider in ([5, 6]). In [5] is consider r is natural and r not equal one. In [6] is consider r is real and r more two. It was proved that for convex approximation estimates of the form (1) are fails for r is real and r more two. In [9] the question of approximation of function of Sobolev`s space and convex by algebraic convex polynomial is consider. It is proved, that for this function, estimate (1) is not true, if r is more three and less four generally speaking. In this paper the question of approximation of function Sobolev`s space and convex by algebraic convex polynomial is consider. This paper is the generalization of results papers [9] and [11]. It is proved, that for function of Sobolev`s space and convex, estimate of the type (1) is not true, generally speaking. The main result is the ana­log of the theorem 2.3 in [11].

Highlights

  • Математичне та комп’ютерне моделювання майже скрізь на [0,1]

  • В роботах [8, 10] побудовано контрприклад, який показує, що результат не може бути поширеним і на клас W r [0,1] з r (2, 3) (3, 4)

  • В роботі було побудовано контрприклад, який показує, що оцінка (1) не може бути поширена на клас функцій f W r [0,1] 2 , r (3; 4)

Read more

Summary

Introduction

Математичне та комп’ютерне моделювання майже скрізь на [0,1]. Теляковський [1] для r 1 та Гопенгауз для r [2] посилили пряму теорему Нікольського–Тіммана довівши, що кожну функцію f W r можна наблизити алгебраїчним многочленом pn степеня n так, що r x(1 x). Нехай W r 0,1 W r , r клас функцій f C[0,1] , таких, що мають абсолютно неперервну (r 1) похідну і f (r) (x) 1 Саме, якщо монотонна функція f W r , то існує монотонний многочлен pn , такий, що має місце (1). У роботі GLSW [4] доведено, що для натурального r 2 оцінка

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call