Abstract

Line tracking is a well defined method of mobile robot navigation. It is simple in concept, technically easy to implement, and already employed in many industrial sites. Among several different line tracking methods, magnetic sensing is widely used in practice. In comparison, vision-based tracking is less popular due mainly to its sensitivity to surrounding conditions such as brightness and floor characteristics although vision is the most powerful robotic sensing capability. In this paper, a vision-based robust path line detection technique is proposed for the navigation of a mobile robot assuming uncontrollable surrounding conditions. The technique proposed has four processing steps; color space transformation, pixel-level line sensing, block-level line sensing, and robot navigation control. This technique effectively uses hue and saturation color values in the line sensing so to be insensitive to the brightness variation. Line finding in block-level makes not only the technique immune from the error of line pixel detection but also the robot control easy. The proposed technique was tested with a real mobile robot and proved its effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.