Abstract

The metal welding is accompanied by the formation of mechanically non-homogenous sections of welded connection. The pipeline welded connections also have sections, which are different in structure, chemical composition and mechanical properties. The mechanical inhomogeneity affects the load bearing capacity of welded connection and the structure as a whole, which is necessary to take into consideration when performing calculation analysis. So far, the specialists have established the dependencies in assessment of welded connection strength with various types of heterogeneous sections. However, this phenomenon has received little attention in case of pipeline welded connections made of low carbon steels. The existing theoretical models do not reflect actual anisotropy of mechanical properties of the welded connections and weld adjacent zone. The present study considers the model of welded connections of K56 pipe steels with various strength characteristics of sections of welded seam and weld adjacent zone, without defects. The assessment of mechanical inhomogeneity influence on load bearing capacity of welded connections was performed by applying the finite-element modelling of its stress-strain state. The developed numerical model helps to determine and optimize the criteria of testing of full scale samples of pipe steel welded connections with regards to the implementation of local strengthening effect. The research results demonstrated that the degree of contact strengthening in welded connections with X-shape grooving is higher than in welded connections with V-shaped grooving by 8 % at similar relative thickness of soft interlayer. The suggested numerical model can be applied for detailed calculations of pipelines with regards to the mechanical inhomogeneity of its welded connections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.