Abstract
Adverse environmental and lifestyle factors produce considerable effects on occurrence of cancerous tumors, both directly and indirectly through impaired functionality of the body protection mechanisms. Investigation of these effects has practical significance for risk assessment and development of effective cancer preventive strategies. Mathematical modeling is an eligible method for considering complex multicomponent interactions between elements of various systems involved in tumor growth. This article presents an approach to assessing risks of cancerous tumors by using a created predictive model that describes dynamics of abnormal cells considering regulatory mechanisms and angiogenesis. An evolution approach is applied to estimate accumulated functional disorders of the immune system due to natural ageing and chemical environmental exposures. The Monte Carlo simulation is employed to estimate a likely outcome of cancerous tumor evolution given different possible properties of abnormal cells. The article provides the results of accomplished computation experiments aimed at describing dynamics of changes in cell population properties in an analyzed organ tissue. Development of a vessel system is described considering different effects of the most significant factors. Computation results are analyzed within various scenarios that describe cancerous tumor growth in dynamics considering how angiogenesis develops under different parameters of the immune system dysfunction and different properties of abnormal cells. Risks of tumor development are assessed considering parameters that determine the overall state of the body (the immune system) and properties of abnormal cells. This approach makes it possible to develop a system of preventive and sanitary-hygienic activities in areas where envi-ronmental conditions are unfavorable in order to reduce cancer incidence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.