Abstract

EU-APR1400, the Korean nuclear reactor design for European market adopts a so-called core catcher for ex-vessel molten corium retention and cooling as a severe-accident mitigation system. Sacrificial material, which controls melt properties and modifies melt conditions favorable for corium cooling and retention, is usually employed to protect core catcher body from molten corium. Since molten corium can be ejected through a breach of a reactor pressure vessel and impinged on the sacrificial material with enhanced heat transfer at a severe accident, it is very important to predict ablation rate of sacrificial material due to corium jet impingement accurately for core catcher design. In this paper, sacrificial-material ablation model based on boundary layer theory is suggested and compared with the experimental results by KAERI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call