Abstract

Relevance Currently, optoelectronic devices based on diffraction gratings from standing elastic waves are widely used. This is due to the fact that such devices are small in size, allow realtime measurements and have high accuracy, speed and reliability. A review of foreign patents and scientific and technical literature shows that in Japan, the USA, Germany and other countries, intensive work has been carried out in recent years to create optoelectronic devices as part of information-measuring systems based on the use of diffraction gratings from standing elastic waves. Such work is also carried out in Russia. Today, optoelectronic devices are widely used in various fields of industry, medicine, ecology, etc. Aim of research It is necessary to investigate the prospects of research on the development of optoelectronic devices based on diffraction gratings from standing elastic waves. It is necessary to consider the physics of processes in the field of acousto-optic interactions. It is important to give the main characteristics and possible applications of optoelectronic devices based on diffraction gratings from standing elastic waves. Research objects Light and sound waves interacting with each other when they pass through the same medium, diffraction grating, optoelectronic device. Research methods Mathematical methods of calculation and analysis. Results The need for research in the field of optoelectronic devices based on diffraction gratings from standing elastic waves is formulated. It is shown that when passing through the same medium, light and sound waves interact with each other. Light is scattered on a sound wave, as on a diffraction grating. Recommendations for the design of optoelectronic devices based on diffraction gratings from standing elastic waves are proposed. Possible areas of application of optoelectronic devices based on diffraction gratings from standing elastic waves are considered. Keywords: acousto-optics, waves, modulator, diffraction grating, optoelectronic device

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call