Abstract

A new approach to the creep strains analysis of thin-shelled tubular elements in isotropic nonlinear viscoelastic materials under combined loading with uniaxial tension and torsion has been proposed. The system of equations that is constructed according to the deviators proportionality hypothesis has been chosen as the creep constitutive equations the nonlinearity of viscoelastic properties in which is given with respect to the creep strain intensity and volumetric strain by the Rabotnov type models. The kernels of creep strain intensity and volumetric strain are given by the relations that establish the relationships between these kernels and one-dimensional creep kernels determined from a system of base experiments. One-dimensional tension with the measurement of longitudinal and transverse strains as well as one-dimensional tension and pure torsion with the measurement of longitudinal and shearing strains have been considered as base experiments. The functions of nonlinearity of viscoelastic properties are given by smoothing cubic splines. The problems of the analysis of longitudinal, transverse and shearing strains of thin-shelled tubular specimens made of “high density polyethylene PEHD” have been solved and experimentally approved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.