Abstract

The “energy separation phenomenon” through a vortex tube has been a long-standing mechanical engineering problem whose operational principle is not yet known. In order to find the operational principle of the vortex tube, CFD analysis of the flow field in the vortex tube has been carried out. It was found that the energy separation mechanism in the vortex tube consists of basically two major thermodynamic-fluid mechanical processes. One is the isentropic expansion process at the inlet nozzle, during which the gas temperature is nearly isentropically cooled. Second process is the viscous dissipation heating due to the high level of turbulence in both flow passages toward cold gas exit as well as the hot gas exit of the vortex tube. Since the amount of such a viscous heating is different between the two passages, the gas temperature at the cold exit is much lower than that at the hot exit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.