Abstract

Biological early warning system detects toxicity by looking at behavior of organisms in water. The system uses classifier for judgement about existence and amount of toxicity in water. Boosting algorithm is one of possible application method for improving performance in a classifier. Boosting repetitively change training example set by focusing on difficult examples in basic classifier. As a result, prediction performance is improved for the events which are difficult to classify, but the information contained in the events which can be easily classified are discarded. In this paper, an incremental learning method to overcome this shortcoming is proposed by using the extended data expression. In this algorithm, decision tree classifier define class distribution information using the weight parameter in the extended data expression by exploiting the necessary information not only from the well classified, but also from the weakly classified events. Experimental results show that the new algorithm outperforms the former Learn++ method without using the weight parameter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.