Abstract

The investigation concerned the effects of low-frequency vibrations on a system consisting of two biochemically active components: methylene blue dye and ascorbic acid. Each component can be reversibly oxidized and reduced. This system allows us to trace the effect that a low-frequency vibration field has on the reciprocal reduction-oxidation process and detect specific features of this type of exposure. We discovered that reduction-oxidation processes in such systems do not accelerate but slow down when exposed to low frequencies, unlike those in the previously studied clathrate and chelate structures. We observe an inhibition effect concerning the sonochemical process in a low-frequency acoustic field. We performed a qualitative estimation of the effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.