Abstract
The article presents a synthesis of a mechanism of parallel-sequential structure with five degrees of freedom capable of processing objects with an extended dimention in one direction, wherein the considered mechanism can have a high bearing capacity. Corresponding problems are associated with manufacturing jet turbine airfoil as well as vertebrae operations (on the human spine). Movement along a coordinate that is linked to large dimensions of a processed object is provided using the initial translation pairs equipped with a motor. It is followed by a flat partial parallel structure mechanism with three degrees of freedom, and further – by a revolute kinematic pair. A kinematic analysis of the considered mechanism is performed, and the inverse kinematic problem is solved. The Angeles-Gosselin method for parallel structure mechanisms is used when performing velocity calculations of the parallel-sequential structure mechanism. The results of the numerical experiment are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of Higher Educational Institutions. Маchine Building
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.