Abstract

The fluid inclusions in the marine Middle Ordovician halite of the Majiagou Salt Formation of the Ordos Basin (China) have been investigated. In addition to the primary inclusions the secondary ones of several generations were also detected. The fluid inclusions brine chemistry of halite was studied using an ultramicrochemical (UMCA) method, and the homogenization temperature of fluid inclusions was determined in a special thermal chamber designed by V. A. Kalyuzhny At the post-sedimentation stage, the studied salt strata were exposed to high temperature (58–72 °C) and high (up to several tens of MPa) pressure. Although there are opinions of the inability of primary inclusions in such halite to determine the physical and chemical conditions of sedimentation, however, the informative value of primary inclusions in halite of the Majiagou Formation has remained. The preservation of the integrity (and thus the informative value) of primary inclusions in halite is evidenced by the same chemistry of their brines, which differs from that of secondary inclusions The sedimentation brines of the basin were concentrated to the middle of halite stage and points to the Na-K-Mg-Ca-Cl seawater. The physical and chemical conditions of evaporites formation are not known enough. Currently, the results of the brine chemistry of primary fluid inclusions in marine halite are the best indicators of seawater composition in the Phanerozoic. It is established that the magnesium content in the brines of the Lower Paleozoic basins is lower comparing to modern seawater of the corresponding concentration, and the potassium ion concentration is higher. The chemical composition of the concentrated seawater from which the halite was crystallized in the Ordovician salt basin of Ordos, with the exception of the calcium ion content, is similar to the seawater chemistry of the Cambrian and Silurian basins, which indicates the relative constancy of Early Paleozoic seawater chemistry. Age-related changes in the chemical composition of seawater are always consistent with many quantitatively or qualitatively characterized processes of the Earth’s crust evolution. So we believe that the causes that led to more than twice the potassium content of Riphean-Devonian clays, unlike the younger ones, it were also the reason for the increase in potassium content in the Lower Paleozoic marine brines. The studies conducted also clarify the limits of oscillation of calcium ion content, which determines the type of seawater. Its content in the sedimentary brines of the Ordos basin of the Middle Ordovician reaches 66 g/l at the middle of halite stage. Therefore, at the beginning of the stage of halite precipitation, its content should be approximately 20 g/l (considering its theoretical content of 10 g/l with the modern composition of the atmosphere). Apparently, the cause of the abnormally high calcium content in the early Paleozoic Ocean was the direct flow of it with hydrothermal solutions into the ocean during the activation of global tectonics of the Earth and the increase of solubility of carbonates of continents and ocean floor due to high carbon dioxide atmospheric content.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.