Abstract

The problem of electromagnetic plane wave scattering by a layered nanoparticle with a metal plasmon shell deposited on the surface of a transparent substrate is considered. Using the Discrete Source Method, the influence of spatial nonlocality in a metal layer on the near-field intensity and absorption cross section is investigated. The particle excitation by both a propagating and evanescent wave are considered. It is shown that the substrate has a more significant effect on the optical characteristics of the near field than on the intensity in the far zone. It was found that taking into account the nonlocal effect in the metal leads to a significant decrease in the plasmon resonance amplitude with a small blue shift.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.