Abstract

AbstractThe structural and electrical properties of PbS nanoparticles (40–70 nm), produced by a chemical reaction of sodium hydroxide with lead nitrate and electrophoretically deposited onto a conductive substrate, are investigated. The composition and structure of the nanoparticles are identified by X-ray analysis as pure PbS phase with a face-centered cubic lattice. Several minima, related to plasma-resonance absorption at 10–17 μm, are observed in the frustrated total internal reflection (FTIR) spectra. The layer morphology and the nanoparticle shape and sizes are determined by scanning electron and tunneling microscopy. The threedimensional topograms show that the surface fine structure is a set of faceted pyramidal spikes with a size of 5–10 nm and a density of ~400 μm^–2. An analysis of the tunneling current–voltage characteristics of individual nanospikes shows the presence of low-field emission and makes it possible to determine the barrier heights (1.6–1.8 eV), which are explained within the quantum-dot (QD) model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.