Abstract

Recent evidence has suggested that cigarette smoking is associated with an increased prevalence of heart diseases. Given that cigarette smoking triggers proinflammatory response via stimulation of the capsaicin-sensitive transient receptor potential cation channel TRPV1, this study was designed to evaluate the effect of an essential α,β-unsaturated aldehyde from cigarette smoke crotonaldehyde on myocardial function and the underlying mechanism with a focus on TRPV1 and mitochondria. Cardiomyocyte mechanical and intracellular Ca2+ properties were evaluated including peak shortening (PS), maximal velocity of shortening/relengthening (±dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90), fura-2 fluorescence intensity (FFI), intracellular Ca2+ decay and SERCA activity. Apoptosis and TRPV1 were evaluated using Western blot analysis. Production of reactive oxygen species (ROS) and DNA damage were measured using the intracellular fluoroprobe 5-(6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate and 8-hydroxy-2′-deoxyguanosine (8-OHdG), respectively. Our data revealed that crotonaldehyde interrupted cardiomyocyte contractile and intracellular Ca2+ property including depressed PS, ±dL/dt, ΔFFI and SERCA activity, as well as prolonged TR90 and intracellular Ca2+ decay. Crotonaldehyde exposure increased TRPV1 and NADPH oxidase levels, promoted apoptosis, mitochondrial injury (decreased aconitase activity, PGC-1α and UCP-2) as well as production of ROS and 8-OHdG. Interestingly, crotonaldehyde-induced cardiac defect was obliterated by the ROS scavenger glutathione and the TRPV1 inhibitor capsazepine. Capsazepine (not glutathione) ablated crotonaldehyde-induced mitochondrial damage. Capsazepine, glutathione and the NADPH inhibitor apocynin negated crotonaldehyde-induced ROS accumulation. Our data suggest a role of crotonaldehyde compromises cardiomyocyte mechanical function possibly through a TRPV1- and mitochondria-dependent oxidative stress mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call