Abstract

Several types of Si-based ceramic fibers have been prepared using an organic-to-inorganic conversion process. In this article, the preparation, microstructure, and high-temperature stability of SiC-based ceramic fibers prepared from polycarbosilane of an organosilicon polymer are reviewed. The first fiber produced was an amorphous Si-C-O fiber, next was a low-oxygen content Si-C fiber, and finally, a nearly stoichiometric SiC fiber was developed. These fibers are continuous fine fibers that have high tensile strength with high heat resistance. The pyrolytic behavior and active-passive oxidation of these fibers at high temperatures are described here. The heat resistance of these fibers increases in the order of the Si-C-O fiber, the Si-C fiber, and the SiC fiber. The high-temperature properties are dependent on the atomic arrangement and the quantity of amorphous SiCxOy and glassy carbon in the fibers. Possible applications for these fibers are as refractory materials, and as reinforcement fibers for plastics, metals, and ceramics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.